説明

半導体装置の作製方法

【課題】TFTを用いた半導体装置において、TFT中の汚染不純物を低減し、信頼性のあるTFTを得ることを課題とする。
【解決手段】ガラス基板上のTFTの被膜に存在する汚染不純物を、フッ素を含有する酸性溶液を被膜表面に接触させ、酸性溶液を一定方向に流すことにより、被膜表面の汚染不純物を除去することにより、信頼性のあるTFTを得ることができる。なお、酸性溶液は、フッ酸とフッ化アンモニウムの混合比が体積比で1:50のバッファードフッ酸を用いる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、基板上に形成され結晶質半導体膜を用いた薄膜トランジスタ(Thin Film Transistor:TFT)等の半導体装置及びその作製方法に関するものである。本発明の半導体装置は、薄膜トランジスタ(TFT)やMOSトランジスタ等の素子だけでなく、これら絶縁ゲート型トランジスタで構成された半導体回路(マイクロプロセッサ、信号処理回路または高周波回路等)を有する液晶表示装置、EL表示装置、EC表示装置又はイメージセンサ等をも含むものである。加えて、本発明の半導体装置は、これらの表示装置を搭載したビデオカメラ、デジタルカメラ、プロジェクター、ゴーグルディスプレイ、カーナビゲーション、パーソナルコンピュータ又は携帯情報端末等の電子機器をも含むものである。
【背景技術】
【0002】
現在、半導体膜を用いた半導体素子として薄膜トランジスタ(TFT)が各種集積回路に用いられており、特にアクティブマトリクス型液晶表示装置の画素部のスイッチング素子として用いられている。更に、TFTの高移動度化に伴って、画素部を駆動するドライバ回路の素子としても用いられている。ドライバ回路に用いられる半導体膜としては、非晶質半導体膜よりも移動度の高い、結晶質半導体膜を用いることが必要である。この結晶質半導体膜(結晶性半導体膜ともいう)は多結晶半導体膜、ポリシリコン膜、微結晶半導体膜等と呼ばれている。
【0003】
TFTを評価する際、最も重要視されるのは信頼性である。信頼性の問題の中で最大のものは可動イオンであるアルカリ金属(1属元素)、おもにナトリウム(Na)の混入であった。Naが正に帯電し、被膜中をイオンとして動きまわることによりVthが変動する現象として見出され、TFTの実用化を阻止していた。このような不純物(以下、NaのようなTFTの信頼性を低下させる不純物を本明細書では汚染不純物という)としては、アルカリ金属(1属元素)やアルカリ土類金属(2属元素)、例えばナトリウ(Na)、カリウム(K)、マグネシウム(Mg)、カルシウム(Ca)、バリウム(Ba)が挙げられる。これら汚染不純物の低減が信頼性のあるTFT作製に必要不可欠であった。ところが汚染不純物は、大気やボンベなどの気相、ガラス基板、スパッタリング装置などの製造装置等、様々な汚染源からTFTに混入する。特に、ガラス基板からの汚染は深刻な問題であり、Naの組成を0.1%以下に低減したガラス基板を用いてもこの信頼性の問題は解決されなかった。そのため、基板上に窒化珪素膜等のブロッキング膜を形成して、ガラス基板に含有されている汚染不純物の拡散を防止し、信頼性の低下を防止していた。
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところがTFT中の汚染不純物の濃度を分析した結果、TFTを構成する被膜界面の汚染不純物濃度が5×1016atoms/cm3 〜5×1019atoms/cm3 と被膜中の汚染不純物濃度(一般に1×1016atoms/cm3 以下)に比べて高く、TFTの信頼性を低下させていることが判明した。特に半導体膜とそれに接する絶縁膜(ゲート絶縁膜として機能する絶縁膜(以下ゲート絶縁膜という)、ブロッキング膜として機能する絶縁膜、又は層間絶縁膜)との界面、又はゲート絶縁膜とそれに接する被膜(半導体膜、ゲート配線(本明細書ではゲート電極を含むものとする)、層間絶縁膜など)との界面に汚染不純物が存在することは、TFTの信頼性を損ねる大きな要因となった。
【0005】
なお、本明細書における不純物濃度は質量2次イオン分析(以下SIMS分析という)により深さ方向の分析を行って測定された濃度とする。SIMS分析は、1次イオンを試料に照射してその表面及び数Åの深さから放出される2次イオンの質量分析を行う方法であり、検出感度が高く、微小領域の分析が可能であるという特徴を有する。ただし、SIMS分析は1次イオンの電流密度を上げて表面をスパッタしながら分析を行うため、深さ方向に対する分解能には限界がある。従って被膜界面の元素濃度の測定を正確に行うことは困難であり、実際には第1の被膜とそれに接する第2の被膜を連続的にSIMS分析し、第1の被膜と第2の被膜の界面及びその近傍(数Å)に相当する元素濃度が測定される。本明細書においては、第1の被膜と第2の被膜の界面及びその近傍(数Å)に相当する元素濃度を、第1の被膜と第2の被膜界面の元素濃度としている。
【0006】
例えば、ゲート配線とゲート絶縁膜の界面にナトリウム(Na)が存在する例を図4〜図6に示す。図4、図5はTFTのSIMS分析結果を示したもので、BT(Bias Temperature :電圧を加えながら加熱する)処理前のSIMS分析結果を図4に、BT処理後のSIMS分析結果を図5に示す。なお、図4、図5におけるNaの検出下限あるいはバックグラウンドレベルは約1×1015 atoms/cm3 である。
【0007】
図4(BT処理前)ではNaの存在を示すピークは1つだけ観測された。それはゲート配線とゲート絶縁膜の界面及びその近傍に相当する位置に見られるピークAである。ところがBT処理後は図5に示すようにNaの存在を示すピークが2つ観測された。1つのピークは図4(BT処理前)にも示されていたゲート配線とゲート絶縁膜の界面及びその近傍に相当する位置に見られるピークAであるが、もう1つのピークは図4(BT処理前)では観測されていなかったゲート絶縁膜と半導体膜の界面及びその近傍に相当する位置に見られるピークBである。
このように図4、図5から、BT処理によりNaがゲート絶縁膜中を移動していることがわかった。その結果、nチャネル型TFT(図6(A)に示す)、Pチャネル型TFT(図6(B)に示す)共にBT処理前(実線)とBT処理後(破線)でID−VG特性に変化が見られた。これはTFTの特性を評価するパラメーターの1つであるしきい値電圧(Vth)の変動を示し、TFTの信頼性が損なわれている結果を示すものである。
【0008】
そこで、本発明は、TFTを構成する被膜中だけでなく、その被膜界面の汚染不純物濃度をTFTの信頼性に影響を及ぼさない程度にまで低減することを課題とする。そしてTFTの信頼性の向上を図り、安価、大画面、高性能な半導体装置を形成することを課題とする。
【0009】
なお本発明の上記課題は、連続成膜されてない被膜界面に関する課題であって、連続成膜された被膜界面に関する課題ではない。なぜならば、連続成膜された被膜と被膜の界面には基本的に汚染不純物が混入せず、被膜界面の汚染不純物濃度を被膜中の汚染不純物濃度と同程度に低濃度とすることができるからである。
しかしながら連続成膜は連続成膜装置を用いて行わなければならず、容易にできることではない。本発明は連続成膜装置を用いず容易に被膜界面の汚染不純物濃度を低減することを課題とする。更に、本発明は連続成膜することができない被膜界面の汚染不純物濃度を低減することを課題とする。実際、非晶質半導体膜上に絶縁膜が存在するとアニールによる非晶質半導体膜の結晶化が困難なため、半導体膜上に絶縁膜がない状態で結晶化が行われている。従って、半導体膜とそれに接して形成される絶縁膜界面の汚染不純物低減を目的として本発明を適用することができる。更に、ゲート絶縁膜とゲート配線は一般に連続成膜されておらず、絶縁膜とゲート配線界面の汚染不純物低減を目的として本発明を適用することができる。
【課題を解決するための手段】
【0010】
上記課題を解決するために、本発明は、第1の被膜形成後、第1の被膜上に第2の被膜を形成する前に、第1の被膜表面の汚染不純物を除去し、その後表面の汚染不純物が除去された第1の被膜上に迅速に第2の被膜を形成することを特徴とする。換言すると、第1の被膜を形成する工程と、前記第1の被膜表面の汚染不純物を除去する工程と、汚染不純物が除去された第1の被膜に接して第2の被膜を形成する工程と、を有することを特徴とする。
【0011】
上記構成において、第1の被膜表面の汚染不純物の除去はエッチング溶液としてフッ素を含有する酸性溶液を用い、第1の被膜表面を極薄く(5nm以下)エッチングすることにより行う。極薄くエッチングする手段としては、スピン装置(スピンエッチャー)を用いて基板をスピンさせ、被膜表面に接触させたエッチング溶液を飛散させる手段(スピンエッチング、スピンエッチともいう)を用いることが有効である。
【0012】
フッ素を含有する酸性溶液としては、Naの組成が規格で0.5ppb 以下、実際の分析では0.05ppb 以下のフッ酸、希フッ酸、フッ化アンモニウム、バッファードフッ酸(フッ酸とフッ化アンモニウムの混合溶液、以下BHFという)
、フッ酸と過酸化水素水の混合溶液(FPM)、フッ化水素アンモニウム(NH4HF2)を7.13%とフッ化アンモニウム(NH4F)を15.4%含む混合溶液(ステラケミファ社製、商品名LAL500)等を用いることができる。このようにフッ素を含有する酸性溶液を用いて被膜表面の汚染不純物を除去した場合、その被膜表面に微量のフッ素元素が存在していると考えられるが、フッ素元素はアルカリ(土類)金属と異なり可動性元素ではないので、特にTFT特性に与える影響は見られない。
【0013】
上記構成により作製された半導体装置の被膜界面における汚染不純物濃度は前記被膜中の汚染不純物濃度のノイズレベル内にあり、前記被膜中の汚染不純物濃度とほぼ同じ濃度とみなすことができる。被膜中のナトリウム濃度はブロッキング膜により低く抑えられ、SIMS分析において2×1016atoms/c m3 以下、条件によってはノイズを考慮した現時点での検出下限以下である1×1016atoms/cm3 以下とすることができる。そして本発明により半導体装置の被膜界面における汚染不純物濃度を被膜中の汚染不純物濃度とほぼ同じ2×1016atoms/cm3 以下、条件によってはノイズを考慮した現時点での検出下限以下である1×1016atoms/cm3 以下とすることができる。なお、上記構成においてはフッ素を含有する酸性溶液により被膜表面の汚染不純物を除去した場合を示したが、被膜表面の汚染不純物を除去できる他の酸性溶液や有機溶剤を用いることもできる。
【0014】
従って、本発明の半導体装置は、第1の被膜と、前記第1の被膜に接して設けられた第2の被膜とを有し、前記第1の被膜と前記第2の被膜の界面における汚染不純物濃度は2×1016atoms/cm3 以下であることを特徴とする。
【0015】
また、本発明の半導体装置は、第1の被膜と、前記第1の被膜に接して設けられた第2の被膜とを有し、前記第1の被膜中の汚染不純物濃度と前記第2の被膜中の汚染不純物濃度と前記第1の被膜と前記第2の被膜の界面における汚染不純物濃度は2×1016atoms/cm3 以下であることを特徴とする。
【0016】
上記構成において、前記第1の被膜と第2の被膜は、結晶質半導体膜と前記結晶質半導体膜に接する絶縁膜であることを特徴とする。
【0017】
また、上記構成において、前記第1の被膜と第2の被膜は、ゲート絶縁膜として機能する絶縁膜と前記絶縁膜に接するゲート配線であることを特徴とする。
【0018】
ゲート絶縁膜とゲート配線界面の汚染不純物除去を行ったSIMS分析結果の例を図7に示す。図7のゲート絶縁膜とゲート配線界面には、Naの存在を示すピークAが確認されるが、その濃度は1×1016atoms/cm3 〜2×1016atoms/cm3 とかなり低減されていることがわかる。なお、図7におけるNaの検出下限あるいはバックグラウンドレベルは約2×1014atoms/cm3 である。
【0019】
本発明の構成とすると、被膜界面の汚染不純物濃度を低減できるので、SIMS分析における汚染不純物濃度を2×1016atoms /cm3 以下とでき、条件によってはノイズを考慮した現時点での検出下限以下である1×101 6atoms /cm3 以下とすることができる。従って、TFT特性のばらつきを小さくできTFTの信頼性を向上させることができる。
【0020】
本構成において汚染不純物とは、1族元素又は2族元素から選択された1元素又は複数元素からなるものを言う。特にNa、K 、Mg、Ca、Baから選択された1元素又は複数元素からなるものを言う。特にNaを言う。
【0021】
また、本構成における被膜とは、プラズマCVD法、熱CVD法、減圧熱CVD法、蒸着法、スパッタリング法、熱酸化法、陽極酸化法等、あらゆる形成手段を用いて形成された被膜をいう。
【0022】
なお、基板としてガラス基板を用い、フッ素を含有する酸性溶液(フッ酸、希フッ酸など)の中に基板を浸して被膜表面をエッチング処理する場合には、わずかではあるがガラス基板が腐食されてガラス基板中の汚染不純物が酸性溶液中に混入し酸性溶液が汚染される。この汚染された酸性溶液にTFTを構成する被膜表面が接触すると、汚染の原因となり問題であった。そこで本発明はガラス基板を用いる場合、エッチングを酸性溶液の中に浸して行うのではなく、スピン装置(スピンエッチャー)を用いて基板をスピンさせ、被膜表面に接触させた酸性溶液を飛散させる手段(スピンエッチング、スピンエッチともいう)を用いることによって被膜表面の汚染不純物除去を行った。スピンエッチングを用いると汚染された酸性溶液をTFTを構成する被膜表面に接触させることなくエッチングできる。なおスピンエッチングを必ずしも用いなければならないわけではない。例えばエッチング溶液が一定方向に流れるような手段を用いることによって、被膜表面を汚染することなく被膜表面の汚染不純物を除去することも可能である。また、ガラス基板の表面、裏面、側面の全てを耐酸性を有する被膜で覆ってしまうことで、酸性溶液による基板の腐食を防止し、基板中の汚染不純物により酸性溶液が汚染されることを防止することも可能である。
【発明の効果】
【0023】
本発明の構成とすると、TFTを構成する被膜中の汚染不純物濃度だけでなく被膜界面の汚染不純物濃度を低減できるので、TFT特性のばらつきを小さくできTFTの信頼性を向上させることができる。
【図面の簡単な説明】
【0024】
【図1】実施の形態1のTFTの作製工程を示す図
【図2】実施の形態1のTFTの作製工程を示す図
【図3】実施の形態1のTFTの作製工程を示す図
【図4】従来のSIMS分析データの一例を示す図
【図5】従来のSIMS分析データの一例を示す図
【図6】従来のID−VGデータの一例を示す図
【図7】SIMS分析データの一例を示す図
【図8】実施の形態2のTFTの作製工程を示す図
【図9】実施の形態2のTFTの作製工程を示す図
【図10】実施の形態3のCMOS回路と画素部の断面図
【図11】実施の形態3の画素部の上面図
【図12】実施の形態4のアクティブマトリクス基板の斜視図
【図13】実施の形態5のELパネル回路図
【図14】実施の形態7のいろいろな半導体装置を示す図
【図15】実施の形態7のいろいろな半導体装置を示す図
【図16】実施の形態7のいろいろな半導体装置を示す図
【図17】実施の形態8のEL表示装置の上面図及び断面図
【図18】実施の形態8のEL表示装置の画素部の構造を示す図
【発明を実施するための形態】
【0025】
以下に本発明の実施の形態を説明するが、特にこれらに限定されないことは勿論である。
【0026】
[実施の形態1]
本発明の実施の形態を図1〜図3により説明する。ここでは、nチャネル型TFTとpチャネル型TFTを同一基板上に作製し、CMOS回路の基本構成であるインバータ回路を形成する実施の形態について説明する。
【0027】
基板101はガラス基板、プラスチック基板、セラミックス基板などを用いることができる。また、酸化シリコン膜や窒化シリコン膜などの絶縁膜を表面に形成したシリコン基板やステンレスに代表される金属基板を用いても良い。勿論、石英基板を用いることも可能である。
【0028】
そして、基板101の少なくともTFTが形成される表面には、窒化珪素膜から成る下地膜102と、酸化珪素膜から成る下地膜103が形成される。これらの下地膜はプラズマCVD法やスパッタ法で形成されるものであり、基板101からTFTに有害な汚染不純物が半導体膜へ拡散することを防ぐためにブロッキング膜として設けてある。そのため、窒化珪素膜からなる下地膜102を20〜100nm、代表的には50nmの厚さに形成し、さらに酸化珪素膜からなる下地膜103を50〜500nm、代表的には150〜200nmの厚さに形成している。
【0029】
勿論、下地膜を窒化珪素膜からなる下地膜102または、酸化珪素膜からなる下地膜103のどちらか一方のみで形成したり、窒化酸化珪素膜などの他の絶縁膜を形成しても良いが、本実施の形態ではTFTの信頼性を考慮して2層構造とした。
【0030】
下地膜103に接して形成される半導体膜は、プラズマCVD法、減圧CVD法、スパッタ法などの成膜法で形成される非晶質半導体膜を、レーザー結晶化法や熱処理による固相成長法で結晶化された、結晶質半導体膜を用いることが望ましい。また、前記成膜法で形成される微結晶半導体膜を適用することも可能である。ここで適用できる半導体材料は、シリコン(Si)、ゲルマニウム(Ge)
、またシリコンゲルマニウム合金、炭化シリコンがあり、その他にガリウム砒素などの化合物半導体材料を用いることもできる。
【0031】
非晶質半導体膜150は10〜100nm、代表的には50nmの厚さに形成される。非晶質半導体膜150としては、非晶質半導体膜、微結晶を有する非晶質半導体膜、微結晶半導体膜を用いることができる。プラズマCVD法で形成される非晶質半導体膜には10〜40atom%の割合で膜中に水素が含まれているので、結晶化の工程に先立って400〜500℃の熱処理の工程を行い水素を膜中から脱離させて含有水素量を5atom%以下としておくことが望ましい。また、非晶質半導体膜をスパッタリング法や蒸着法などの他の方法で形成しても良いが、膜中にナトリウム等のアルカリ金属が混入しないように十分注意しなければならない。(図1(A))
【0032】
また、下地膜と非晶質半導体膜とは同じ成膜法で形成可能であるので、下地膜102と下地膜103と、さらに非晶質半導体膜150を連続形成することは好ましい。それぞれの膜を形成した後、その膜表面を大気雰囲気に触れさせずに次の膜を形成することにより、膜界面の不純物汚染を防ぐことができる。その結果、TFTの特性バラツキを発生させる要因の一つをなくすことができる。なお、下地膜と半導体膜を連続成膜しない場合は、下地膜表面の汚染不純物を除去してから半導体膜を形成するとよい。
【0033】
非晶質半導体膜150を結晶化する工程は、公知のレーザー結晶化技術または熱結晶化の技術を用いれば良い。また、触媒元素を用いた熱結晶化の技術により結晶質半導体膜を得ることもできる。さらに、触媒元素を用いた熱結晶化の技術により形成された結晶質半導体膜151に対してゲッタリングの工程を加えて、前記触媒元素を除去すると優れたTFT特性を得ることができる。(図1(B)

【0034】
レーザー結晶化技術を用いる場合は、パルス発振型または連続発光型のエキシマレーザーや固体レーザーであるYAGレーザー、YVO4レーザー、YLFレーザー、YAlO3レーザーを用いる。これら固体レーザーはレーザーダイオード励起の方式を使用すると高出力で高い繰り返し周波数を実現することができる。YAGレーザー、YVO4レーザー、YLFレーザー、YAlO3レーザーはその第2高調波(532nm)、第3高調波(355nm)、第4高調波(266nm)
を用いることができる。大別すると、波長400nm以上のレーザー光を照射した場合には光の侵入長との兼ね合いで半導体膜の内部から加熱して結晶化することができる。一方、波長400nm以下では半導体膜の表面から加熱して結晶化させることができる。いずれにしても、照射パルス数や照射エネルギー密度を適したものとして行う。
【0035】
これらのレーザーを用いる場合には、レーザー発振器から放射されたレーザー光を光学系で線状に集光し半導体膜に照射する方法を用いるとよい。結晶化の条件は実施者が適宣選択するものであるが、エキシマレーザーを用いる場合はパルス発振周波数30Hzとし、レーザーエネルギー密度を100〜400mJ/cm2(代表的には200〜300mJ/cm2)とする。また、YAGレーザーを用いる場合にはその第2高調波を用いパルス発振周波数1〜10kHzとし、レーザーエネルギー密度を300〜600mJ/cm2(代表的には350〜500mJ/cm2)とすると良い。そして幅100〜1000μm、例えば400μmで線状に集光したレーザー光を基板全面に渡って照射し、この時の線状レーザー光の重ね合わせ率(オーバーラップ率)を80〜98%として行う。
【0036】
結晶化工程により形成された結晶質半導体膜151を、第1のフォトマスクを使用して、公知のパターニング法によりレジストマスクを形成し、ドライエッチング法により第1の島状半導体膜105と、第2の島状半導体膜104を形成した。(図1(C))
【0037】
次に、第1の島状半導体膜105表面及び第2の島状半導体膜104表面に存在する汚染不純物155の除去を行った。汚染不純物155の除去は、スピン装置(スピンエッチャー)を用いて基板を600rpm 、10秒スピンさせ、被膜表面に滴下して接触させたフッ素を含有する酸性溶液を飛散させる手段(スピンエッチング、スピンエッチともいう)を用いて行った。ここではフッ素を含有する酸性溶液としてフッ酸とフッ化アンモニウムの混合比が体積比で1:50のバッファードフッ酸(BHF)を用いた。スピンエッチングを用いることによって、極薄く被膜を除去することができ、かつ汚染された酸性溶液による被膜表面の汚染を防止することができる。なお、スピン装置の回転数や時間等の条件は、基板面積、エッチング溶液濃度、被膜材料などによって適宜最適な条件を見つければよい。また、エッチング溶液として1:50BHFを用いたが、混合比の違うBHFやFPMなどの他のフッ素を含有する酸性溶液を用いることもできる。(図1(D))
【0038】
そして、汚染不純物155が除去された第1の島状半導体膜105表面と第2の島状半導体膜104表面に、酸化珪素または窒化珪素を主成分とするゲート絶縁膜106を形成する。ゲート絶縁膜106は、プラズマCVD法やスパッタ法で形成し、その厚さを10〜200nm、好ましくは50〜150nmとして形成する。なお、汚染不純物155の除去後速やかにゲート絶縁膜を形成することにより、半導体膜104、105とゲート絶縁膜106界面の汚染不純物の濃度を低く保つことができ、2×1016atoms /cm3 以下とすることができる。(図1(E))
【0039】
次に、第2のフォトマスクにより、第2の島状半導体膜104と、第1の島状半導体膜105のチャネル形成領域を覆うレジストマスク107、108を形成した。このとき、配線を形成する領域にもレジストマスク109を形成しておいても良い。
【0040】
そして、n型を付与する不純物元素を添加することにより第2の価電子制御用不純物領域を形成した。なお、本明細書では汚染不純物と区別するため、価電子制御を目的としたn型又はp型の導電型を付与する不純物を「価電子制御用不純物」という。また、n型又はp型の導電型を付与する不純物は意図的に添加されたものなので、「添加不純物」といってもよい。
結晶質半導体材料に対してn型を付与する価電子制御用不純物元素としては、リン(P)、砒素(As)、アンチモン(Sb)などが知られているが、ここではリンを価電子制御用不純物元素として、フォスフィン(PH3 )を用いたイオンドープ法で行った。この工程では、ゲート絶縁膜106を通してその下の半導体膜にリンを添加するために、加速電圧は80keVと高めに設定した。半導体膜に添加されるリンの濃度は、1×1016〜1×1019atoms/cm3 の範囲にするのが好ましく、ここでは1×1018atoms/cm3 とした。そして、半導体膜にリンが添加された領域110、111が形成された。ここで形成された第2の価電子制御用不純物領域の一部は、LDD領域として機能するものである。( 図1(F))
【0041】
次に、レジストマスクの除去を行った。レジストマスクを除去するためには、アルカリ性の市販の剥離液を用いても良いが、アッシング法を用いると効果的であった。アッシング法は酸化雰囲気中でプラズマを形成し、そこに硬化したレジストをさらして除去する方法であるが、その雰囲気中に酸素の他に水蒸気を添加しておくと効果的であった。(図2(A))
【0042】
次に、ゲート絶縁膜106表面の汚染不純物156の除去を行った。汚染不純物の除去は、第1の島状半導体膜105表面及び第2の島状半導体膜104表面の汚染不純物除去と同様に、フッ素を含有する酸性溶液としてBHFを用いてスピンエッチングにより行い、極薄く被膜を除去することができ、かつ汚染された酸性溶液による被膜表面の汚染を防止した。ここでも、エッチング溶液としてFPMなどの他のフッ素を含有する酸性溶液を用いることもできる。(図2(B)

【0043】
そして、ゲート絶縁膜106表面の汚染不純物156が除去されたゲート絶縁膜106に接して第1の導電膜112を形成した。第1の導電膜112は、Ta、Ti、Mo、Wから選ばれた元素を主成分とする導電性材料を用いて形成する。第1の導電膜112の厚さは10〜100nm、好ましくは150〜400nmで形成すれば良い。なお、汚染不純物156の除去後速やかに第1の導電膜112を形成することにより、ゲート絶縁膜106と第1の導電膜112界面の汚染不純物の濃度を低く保つことができ、2×1016atoms /cm3 以下とすることができる。(図2(C))
【0044】
その他、第1の導電膜としてWMo、TaN、MoTa、WSix (x=2.4<X<2.7 )などの化合物材料を用いて形成することができる。
【0045】
Ta、Ti、Mo、Wなどの導電性材料は、AlやCuに比べ抵抗率が高いが、作製する回路の面積との関係で、100cm2 程度までならば問題なく使用できる。
【0046】
次に、第3のフォトマスクによりレジストマスク113、114、115、116を形成した。レジストマスク113は、pチャネル型TFTのゲート電極を形成するためのものであり、レジストマスク115、116は、ゲート配線およびゲートバスラインを形成するためのものであった。また、レジストマスク114は第1の島状半導体層の全面を覆って形成され、次の工程において、価電子制御用不純物が添加されるのを阻止するマスクとするために設けられた。
【0047】
第1の導電膜はドライエッチング法により不要な部分が除去され、第2のゲート電極117と、ゲート配線119と、ゲートバスライン120が形成された。
ここで、エッチング後残渣が残っている場合にはアッシング処理すればよい。
【0048】
そして、レジストマスク113、114、115、116をそのまま残して、pチャネル型TFTが形成される第2の島状半導体膜104の一部に、p型を付与する価電子制御用不純物元素を添加して第3の価電子制御用不純物領域を形成する工程を行った。p型を付与する価電子制御用不純物元素としては、ボロン(B)、アルミニウム(Al)、ガリウム(Ga)、が知られているが、ここではボロンをその価電子制御用不純物元素として、ジボラン(B2 6 )を用いてイオンドープ法で添加した。ここでも加速電圧を80keVとして、2×1020atoms/cm3 の濃度にボロンを添加した。そして、図2(D)に示すようにボロンが高濃度に添加された第3の価電子制御用不純物領域121、122が形成された。
【0049】
図2(D)で設けられたレジストマスクを除去した後、第4のフォトマスクを用いてレジストマスク123、124、125を形成した。第4のフォトマスクはnチャネル型TFTのゲート電極を形成するためのものであり、ドライエッチング法により第1のゲート電極126が形成された。このとき第1のゲート電極126は、上面から見て第2の価電子制御用不純物領域110、111の一部とゲート絶縁膜を介して重なるように形成された。(図2(E))
【0050】
そして、レジストマスク123、124、125を完全に除去した後、第5のフォトマスクによりレジストマスク129、130、131を形成した。レジストマスク130は第1のゲート電極126を覆って、さらに上面から見て第2の価電子制御用不純物領域110、111の一部と重なる形で形成されたものであった。レジストマスク130は、LDD領域のオフセット量を決めるものであった。
【0051】
また、ここでレジストマスク130を使用してゲート絶縁膜の一部を除去して、第1の価電子制御用不純物領域が形成される半導体膜の表面を露出させておいても良い。このようにすると、次の工程で実施されるn型を付与する価電子制御用不純物元素を添加する工程を効率的に実施することができる。
【0052】
そして、n型を付与する価電子制御用不純物元素を添加して第1の価電子制御用不純物領域を形成する工程を行った。そして、ソース領域、ドレイン領域となる第1の価電子制御用不純物領域132、133が形成された。ここでは、フォスフィン(PH3 )を用いたイオンドープ法で行った。この工程でも、ゲート絶縁膜106を通してその下の半導体層にリンを添加するために、加速電圧は80keVと高めに設定した。この領域のリンの濃度はn型を付与する第1の価電子制御用不純物元素を添加する工程と比較して高濃度であり、1×1019〜1×1021at oms/cm3 とするのが好ましく、ここでは1×1020atoms/cm3 とした。
(図3(A))
【0053】
そして、ゲート絶縁膜106、第1および第2のゲート電極126、117、ゲート配線127、ゲートバスライン128の表面に第1の層間絶縁膜134、135を形成した。第1の層間絶縁膜134は窒化珪素膜であり、50nmの厚さで形成した。また第1の層間絶縁膜135は酸化珪素膜であり、950nmの厚さに形成された。なお、第1の層間絶縁膜形成前に表面の汚染不純物除去を行うことが望ましい。
【0054】
ここで形成された窒化珪素膜から成る第1の層間絶縁膜134は次の熱処理の工程を行うために必要なものであった。これは第1および第2のゲート電極126、117、ゲート配線127、ゲートバスライン128の表面が酸化することを防ぐために効果的であった。
【0055】
熱処理工程は、それぞれの濃度で添加されたn型またはp型を付与する価電子制御用不純物元素を活性化するために行う必要があった。この工程は、電気加熱炉を用いた熱アニール法や、前述のエキシマレーザーを用いたレーザーアニール法や、ハロゲンランプを用いたラピットサーマルアニール法(RTA法)で行えば良い。レーザーアニール法は低い基板加熱温度で活性化することができるが、ゲート電極の下にかくれる領域まで活性化させることは困難であった。従って、ここでは熱アニール法を用いて活性化の工程を行った。加熱処理は、窒素雰囲気中において300〜700℃、好ましくは350〜550℃、ここでは450℃、2時間の処理を行った。
【0056】
レーザーアニール法で行う場合には、パルス発振型または連続発光型のエキシマレーザーや固体レーザーであるYAGレーザー、YVO4レーザー、YLFレーザー、YAlO3レーザーを適用することができる。これら固体レーザーはレーザーダイオード励起の方式を使用すると高出力で高い繰り返し周波数を実現することができる。YAGレーザー、YVO4レーザー、YLFレーザー、YAlO3レーザーはその第2高調波(532nm)、第3高調波(355nm)、第4高調波(266nm)を用いることができる。大別すると、波長400nm以上のレーザー光を照射した場合には光の侵入長との兼ね合いで半導体膜の内部から加熱してアニールすることができる。一方、波長400nm以下では半導体膜の表面から加熱してアニールすることができる。いずれにしても、照射パルス数や照射エネルギー密度を適したものとして行う。
【0057】
この熱処理工程において、窒素雰囲気中に3〜90%の水素を添加しておいても良い。また、熱処理の工程の後に、さらに3〜100%の水素雰囲気中で150〜500℃、好ましくは300〜450℃で2〜12時間の水素化処理の工程を行うと良い。または、150〜500℃、好ましくは200〜450℃の基板温度で水素プラズマ処理をしても良い。いずれにしても、水素が半導体膜中やその界面に残留する欠陥を補償することにより、TFTの特性を向上させることができた。
【0058】
第1の層間絶縁膜134、135はその後、第6のフォトマスクを用い、所定のレジストマスクを形成した後、エッチング処理によりそれぞれのTFTのソース領域と、ドレイン領域に達するコンタクトホールが形成された。そして、第2の導電膜を形成し、第7のフォトマスクを用いたパターニングの工程によりソース電極、ドレイン電極136、137、138を形成した。図示していないが、本実施の形態ではこの第2の導電膜を、Ti膜を100nm、Tiを含むAl膜300nm、Ti膜150nmをスパッタ法で連続して形成した3層構造として用いた。
【0059】
以上の工程で、pチャネル型TFTはゲート電極に自己整合的(セルフアライン)に形成され、nチャネル型TFTはゲート電極に非自己整合的(ノンセルフアライン)に形成された。
【0060】
CMOS回路のnチャネル型TFTにはチャネル形成領域142、第1の価電子制御用不純物領域145、146、第2の価電子制御用不純物領域143、144が形成された。ここで、第2の価電子制御用不純物領域は、ゲート電極と重なる領域(GOLD領域)143a、144aと、ゲート電極と重ならない領域(LDD領域)143b、144bがそれぞれ形成された。第1の価電子制御用不純物領域145、146はソース領域、ドレイン領域となった。
【0061】
一方、pチャネル型TFTは、チャネル形成領域139、第3の価電子制御用不純物領域140、141が形成された。そして、第3の価電子制御用不純物領域140、141はソース領域、ドレイン領域となった。(図3(B))
【0062】
また、図3(C)はインバータ回路の上面図を示し、TFT部分のA−A' 断面構造、ゲート配線部分のB−B' 断面構造,ゲートバスライン部分のC−C' 断面構造は、図3(B)と対応している。本発明において、ゲート電極とゲート配線とゲートバスラインとは、第1の導電層から形成されている。なお、本実施の形態においてゲート電極とゲート配線とゲートバスラインを区別したが、それらをまとめてゲート配線ということもある。
【0063】
図1〜図3では、nチャネル型TFTとpチャネル型TFTとを相補的に組み合わせて成るCMOS回路を例にして示したが、nチャネル型TFTを用いたNMOS回路や、液晶表示装置の画素部に本願発明を適用することもできる。
【0064】
本実施の形態では、被膜界面の汚染不純物濃度を低減できるので、SIMS分析における有害な汚染不純物濃度を2×1016atoms /cm3 以下、条件によってはノイズを考慮した現時点での検出下限以下である1×1016atoms /cm3 以下とすることができる。従って、TFT特性のばらつきを小さくできTFTの信頼性を向上させることができる。
【0065】
また、上記本実施の形態において結晶化工程の前に非晶質半導体膜へ価電子制御用不純物の添加を行ない、TFTのしきい値制御を行う工程を加えてもよい。
しきい値制御を行う工程としては、例えば、非晶質半導体膜上に制御絶縁膜(膜厚100〜200nm)を設けて、ボロンをしきい値制御が可能な濃度範囲(SIMS分析で1×1016〜1×1017atoms /cm3 )で添加し、その後、制御絶縁膜を除去する工程を採用できる。
【0066】
また、本実施の形態においては、結晶質半導体膜のパターニングを結晶化工程の後に行う例を示したが、特にこれに限定されず、例えば結晶化工程前、またはドーピング工程前に行ってもよい。
【0067】
また、本実施の形態において、トップゲート型の例を示したが、ボトムゲート型に適用することもできる。
【0068】
また、本実施の形態において、汚染不純物の除去は島状半導体膜表面及びゲート絶縁膜表面に対して行ったが、それ以外の例えば下地膜表面や層間絶縁膜表面に対して適用してもよい。
【0069】
[実施の形態2]
本発明の実施の形態を図8、図9により説明する。ここでは、nチャネル型TFTとpチャネル型TFTを有するボトムゲート型のTFTを形成する実施の形態について説明する。
【0070】
まず、基板801としてガラス基板(コーニング1737;歪点667℃)を用意した。次いで、基板からの汚染不純物拡散を防止してTFTの電気特性を向上させるため下地膜として窒化酸化珪素膜850を100nm〜300nmの膜厚に形成した。
【0071】
ここでは基板の片面だけに窒化酸化珪素膜を設けた例を示したが、基板の片面だけでなく両面に設けることは有効である。基板の両面に下地膜を設けることによって、半導体装置作製時に基板から拡散するナトリウム等汚染不純物を完全にブロックすることができる。そして更に、下地膜で基板全面を覆うことは有効である。
【0072】
次いで、下地膜850上に積層構造(簡略化のため図示しない)のゲート配線(ゲート電極を含む)802を形成した。本実施の形態では、スパッタリング法を用いて窒化タンタル膜(膜厚50nm)とタンタル膜(膜厚250nm)を積層形成し、公知のパターニング技術であるフォトリソグラフィー法を用いて積層構造を有するゲート配線(ゲート電極を含む)802を形成した。(図8(A)

【0073】
次に、下地膜850表面及びゲート配線802表面の汚染不純物860の除去を行う。汚染不純物860の除去は、スピン装置(スピンエッチャー)を用いて基板を600rpm 、10秒スピンさせ、被膜表面に滴下して接触させたフッ素を含有する酸性溶液を飛散させる手段(スピンエッチング、スピンエッチともいう)を用いて行った。ここではフッ素を含有する酸性溶液としてフッ酸とフッ化アンモニウムの混合比が体積比で1:50のバッファードフッ酸(BHF)を用いた。スピンエッチングを用いることによって、極薄く被膜を除去することができ、かつ汚染された酸性溶液による被膜表面の汚染を防止することができる。なお、スピン装置の回転数や時間等の条件は、基板面積、エッチング溶液濃度、被膜材料などによって適宜最適な条件を見つければよい。また、エッチング溶液として1:50BHFを用いたが、混合比の違うBHFやFPMなどの他のフッ素を含有する酸性溶液を用いることもできる。(図8(B))
【0074】
下地膜850表面及びゲート配線802表面の汚染不純物を除去した後、ゲート絶縁膜803、非晶質半導体膜804を順次大気開放しないで積層形成した。
なお、汚染不純物860の除去後速やかにゲート絶縁膜803、非晶質半導体膜804を形成することにより、ゲート配線802とゲート絶縁膜803界面の汚染不純物の濃度を低く保つことができ、2×1016atoms /cm3 以下とすることができる。
【0075】
ゲート絶縁膜803は、本実施の形態では信頼性を考慮して窒化珪素膜803a(膜厚50nm)と酸化珪素膜803b(膜厚125nm)をプラズマCVD法により積層形成し、積層構造のゲート絶縁膜とした。本実施の形態では二層の絶縁膜をゲート絶縁膜として採用しているが、単層または三層以上の積層構造としてもよい。また、本実施の形態ではゲート絶縁膜上に非晶質半導体膜804として、膜厚54nmの非晶質珪素膜(アモルファスシリコン膜)をプラズマCVD法により形成した。なお、いずれの層の界面にも大気からの汚染物質が付着しないようにするため順次大気開放せずに積層形成した。その後、半導体膜の結晶化を妨げる非晶質珪素膜中の水素濃度を低減するための加熱処理(500℃、1時間)を行った。(図8(C))
【0076】
こうして図8(C)の状態が得られたら、非晶質半導体膜804に対して赤外光または紫外光の照射(レーザーアニール)による結晶化(レーザー結晶化)を行い結晶質半導体膜(結晶を含む半導体膜)805を形成した。結晶化技術として紫外光を用いる場合はエキシマレーザー光または紫外光ランプから発生する強光を用いればよく、赤外光を用いる場合は赤外線レーザー光または赤外線ランプから発生する強光を用いればよい。本実施の形態ではKrFエキシマレーザー光を線状にビーム形成して照射した。なお、照射条件としては、パルス周波数が30Hz、オーバーラップ率は96%、レーザーエネルギー密度は100〜500m J/cm2 (代表的には200〜300mJ/cm2) であり本実施の形態では360mJ/cm2とした。なお、レーザー結晶化の条件(レーザー光の波長、オーバーラップ率、照射強度、パルス幅、繰り返し周波数、照射時間等)は、非晶質半導体膜804の膜厚、基板温度等を考慮して実施者が適宜決定すればよい。なお、レーザー結晶化の条件によっては、半導体膜が溶融状態を経過して結晶化する場合や、半導体膜が溶融せずに固相状態、もしくは固相と液相の中間状態で結晶化する場合がある。この工程により非晶質半導体膜804は結晶化され、結晶質半導体膜805に変化する。本実施の形態において結晶質半導体膜とは多結晶珪素膜(ポリシリコン膜)である。なお本実施の形態ではレーザ結晶化の技術を用いたが、触媒元素を用いた熱結晶化の技術を用いて結晶化を行っても良い。
【0077】
また、レーザー結晶化法で結晶質半導体膜を作製するには、パルス発振型または連続発光型のエキシマレーザーや固体レーザーであるYAGレーザー、YVO4レーザー、YLFレーザー、YAlO3レーザーを用いることができる。これら固体レーザーはレーザーダイオード励起の方式を使用すると高出力で高い繰り返し周波数を実現することができる。YAGレーザー、YVO4レーザー、YLFレーザー、YAlO3レーザーはその第2高調波(532nm)、第3高調波(355nm)、第4高調波(266nm)を用いることができる。大別すると、波長400nm以上のレーザー光を照射した場合には光の侵入長との兼ね合いで半導体膜の内部から加熱して結晶化することができる。一方、波長400nm以下では半導体膜の表面から加熱して結晶化させることができる。いずれにしても、照射パルス数や照射エネルギー密度を適したものとして行う。
【0078】
これらのレーザーを用いる場合には、レーザー発振器から放射されたレーザー光を光学系で線状に集光し半導体膜に照射する方法を用いると良い。結晶化の条件は実施者が適宣選択するものであるが、YAGレーザーを用いる場合にはその第2高調波を用いパルス発振周波数1〜10kHzとし、レーザーエネルギー密度を300〜600mJ/cm2(代表的には350〜500mJ/cm2)とすると良い。そして幅100〜1000μm、例えば400μmで線状に集光したレーザー光を基板全面に渡って照射し、この時の線状レーザー光の重ね合わせ率(オーバーラップ率)を80〜98%として行う。
【0079】
次に、こうして形成された結晶質半導体膜805に価電子制御用不純物元素を添加する工程を行い、価電子制御用不純物の活性化処理を行なった後、水素雰囲気中で熱処理(350℃、1時間)を行い全体を水素化した。なお、本実施の形態では水素化は熱処理を用いて行ったがプラズマ水素処理を用いて行ってもよい。その後、公知のパターニング技術により所望の形状を有する活性層として島状半導体膜を形成した。
【0080】
以上の工程を経て、Nチャネル型TFTは、ソース領域815、ドレイン領域816、価電子制御用不純物が1×1016〜1×1019atoms/cm3 で添加された低濃度価電子制御用不純物領域(低濃度不純物領域ともいう)817、818、チャネル形成領域819が形成され、Pチャネル型TFTは、ソース領域821、ドレイン領域822、チャネル形成領域820が形成された。ここで、Nチャネル型TFTの低濃度価電子制御用不純物領域817、818は、上面から見てゲート電極と重なる領域(GOLD領域)とゲート領域と重ならない領域(LDD領域)がそれぞれ形成された。(図9(A))
【0081】
次に、島状半導体膜表面の汚染不純物861の除去を行った。汚染不純物861の除去は、下地膜850表面及びゲート配線802表面の汚染不純物除去と同様、フッ素を含有する酸性溶液としてBHFを用いてスピンエッチングにより行い、極薄く被膜を除去することができ、かつ汚染された酸性溶液による被膜表面の汚染を防止した。ここでも、エッチング溶液としてFPMなどの他のフッ素を含有する酸性溶液を用いることもできる。(図9(B))
【0082】
次いで、汚染不純物が除去された島状半導体膜を覆って、プラズマCVD法により膜厚100nmの酸化珪素膜と、TEOSと酸素(O2 )を原料ガスに用いた膜厚940nmの酸化珪素膜との積層構造の層間絶縁膜823を形成した。なお、汚染不純物861の除去後速やかに層間絶縁膜823を形成することにより、島状半導体膜と層間絶縁膜823界面の汚染不純物の濃度を低く保つことができ、2×1016atoms /cm3 以下とすることができる。(図9(C))
【0083】
そして、コンタクトホールを形成してソース配線824、826、ドレイン配線825、827を形成して図9(D)に示す状態を得た。最後に水素雰囲気中で熱処理を行い、全体を水素化してNチャネル型TFT及びPチャネル型TFTを完成させた。この水素化はプラズマ水素処理を用いて行ってもよい。
【0084】
なお、本実施の形態においては、工程順序を変更し非晶質半導体膜のパターニング後に結晶化処理を行ってもよい。
【0085】
また、結晶化工程の前に非晶質半導体膜へ価電子制御用不純物の添加を行ない、TFTのしきい値制御を行ってもよい。
【0086】
本実施の形態では、被膜界面の汚染不純物濃度を低減できるので、SIMS分析における有害な汚染不純物濃度を2×1016atoms /cm3 以下、条件によってはノイズを考慮した現時点での検出下限以下である1×1016atoms /cm3 以下とすることができる。従って、TFT特性のばらつきを小さくできTFTの信頼性を向上させることができる。
【0087】
[実施の形態3]
本実施の形態では、上記実施の形態1によって作製されたNチャネル型TFT及びPチャネル型TFTを備えた液晶表示装置の例を図10と図11に示す。本実施の形態の半導体装置は、同一基板上にCMOS回路と画素部にマトリクス状に配置された回路を備えている。
【0088】
図10には本実施の形態の半導体装置の断面図を示す。本実施の形態においても信頼性を考慮して基板1101上に設けられた下地膜1102上にTFTが設けられている。
【0089】
図10の左側に示すCMOS回路はインバータ回路とも呼ばれ、半導体回路を構成する基本回路である。このようなインバータ回路を組みあわせることで更に複雑なロジック回路を構成することができる。
【0090】
CMOS回路のPチャネル型TFTは、チャネル形成領域1154、第3の価電子制御用不純物領域1155、1156が形成されている。第3の価電子制御用不純物領域1155、1156には2×1020atoms/cm3 の濃度でボロンが添加されている。
【0091】
一方、CMOS回路のNチャネル型TFTはチャネル形成領域1157、リンが1×1019〜1×1021atoms/cm3 の濃度で添加された第1の価電子制御用不純物領域1160、1161、リンが1×1016〜1×1019atoms/cm3 で添加された第2の価電子制御用不純物領域1158、1159が形成されている。ここで、第2の価電子制御用不純物領域は、ゲート電極1131と重なる領域(GOLD領域)1158a、1159a、ゲート電極1131と重ならない領域(LDD領域)1158b、1159bがそれぞれ形成されている。
【0092】
画素部に設けられたNチャネル型TFTは、チャネル形成領域1162、1163と第1の価電子制御用不純物領域1168、1169、1145と第2の価電子制御用不純物領域1164、1165、1166、1167とオフセット領域1180、1181、1182、1183が形成されている。第1の価電子制御用不純物領域はリンが1×1019〜1×1021atoms/cm3 の濃度で添加された領域であり、第2の価電子制御用不純物領域は第1の価電子制御用不純物領域よりも価電子制御用不純物が低濃度な低濃度領域でありリンが1×1016〜1×1019atoms/cm3 の濃度で添加された領域である。画素部ではオフ電流のバラツキを低減させるためマルチゲート構造を採用しており、また漏れ電流を低減させるためオフセット構造を採用している。そのため第2の価電子制御用不純物領域はゲート電極と重ならない構造となっている。ドレイン側には、第2の価電子制御用不純物領域と同じ濃度でN型を付与する価電子制御用不純物元素が添加された、低濃度価電子制御用不純物領域1170、ゲート絶縁膜1106、保持容量電極1171とが形成され、画素部に設けられる保持容量が形成されている。
【0093】
そして、第1の層間絶縁膜1147(50nmの窒化珪素膜)、1148(950nmの酸化珪素膜)、ソース電極1149、1150、1151とドレイン電極1152、1153、パッシベーション膜1401(50nmの窒化珪素膜)、第2の層間絶縁膜1402(1000nmの有機樹脂膜)、第3の層間絶縁膜1404、画素電極1405(100nmの酸化インジウム・スズ(ITO)
膜)が形成されている。
【0094】
第2の層間絶縁膜1402として用いる有機樹脂膜は、ポリイミド、アクリル、ポリイミドアミド等を使用することができる。有機樹脂膜を用いることの利点は、成膜方法が簡単である点や、比誘電率が低いので、寄生容量を低減できる点、平坦性に優れる点などが上げられる。なお上述した以外の有機樹脂膜を用いることもできる。ここでは、基板に塗布後、熱重合するタイプのポリイミドを用いた。
【0095】
図11は画素部の上面図であり、ほぼ1画素の上面図である。 画素部にはNチャネル型TFTが設けられている。ゲート配線1703に連続して形成されるゲート電極1702は、図示されていないゲート絶縁膜を介してその下の半導体層1701と交差している。図示はしていないが、半導体層には、ソース領域、ドレイン領域、第1の価電子制御用不純物領域が形成されている。また、画素TFTのドレイン側には、半導体層と、ゲート絶縁膜と、ゲート電極と同じ材料で形成された電極とから、保持容量1707が形成されている。また、図11で示すA―A' 、およびB−B' に沿った断面構造は、図10に示す画素部の断面図に対応している。
【0096】
本実施の形態では、画素TFTをダブルゲートの構造としているが、開口率を向上させるためシングルゲートの構造でも良いし、オフ電流のバラツキを低減するためトリプルゲートとしたマルチゲート構造にしても構わない。本実施の形態のアクティブマトリクス基板の構造は、本実施の形態の構造に限定されるものではない。本願発明の構造は、ゲート電極の構造と、ゲート絶縁膜を介して設けられた半導体層のソース領域と、ドレイン領域と、その他の価電子制御用不純物領域の構成に特徴があるので、それ以外の構成については実施者が適宣決定すれば良い。
【0097】
また本実施の形態では一例として透過型のLCDを作製したが特にこれに限定されることはない。例えば、画素電極の材料として反射性を有する金属材料を用い、画素電極のパターニングの変更、または幾つかの工程の追加/削除を適宜行えば反射型のLCDを作製することが可能である。
【0098】
なお、本実施の形態では実施の形態1の作製方法を採用しているため、半導体膜とゲート絶縁膜1106の界面、及びゲート絶縁膜1106とゲート電極、ゲート配線、ゲートバスライン、保持容量電極の界面の汚染不純物濃度(Na濃度)が低減されている。それぞれの被膜界面のSIMS分析における汚染不純物の濃度は2×1016atoms /cm3 以下、条件によってはノイズを考慮した現時点での検出下限以下である1×1016atoms /cm3 以下となっている。なお、実施の形態2の作製方法と組み合わせたり、汚染不純物濃度の低減が必要とされる他の被膜界面に汚染不純物除去工程を適用することもできる。本実施の形態により、特性のばらつきが小さく信頼性のあるTFTを得ることができる。
【0099】
〔実施の形態4〕
本実施の形態では、本願発明によって作製された液晶表示装置の例を図12に示す。画素TFT(画素スイッチング素子)の作製方法やセル組工程は公知の手段を用いれば良いので詳細な説明は省略する。
【0100】
図12は、本実施の形態のアクティブマトリクス型液晶パネルの概略図である。図12に示すようにアクティブマトリクス基板と対向基板とが対向し、これらの基板間に液晶が挟まれている。アクティブマトリクス基板はガラス基板1000上に形成された画素部1001、走査線駆動回路1002、信号線駆動回路1003を有する。
【0101】
走査線駆動回路1002、信号線駆動回路1003はそれぞれ走査線1030、信号線1040によって画素部1001に接続されている。これら駆動回路1002、1003はCMOS回路で主に構成されている。
【0102】
画素部1001の行ごとに走査線1030が形成され、列ごとに信号線1040が形成されている。走査線1030、信号線1040の交差部近傍には、画素TFT810が形成されている。画素TFT1010のゲート電極は走査線1030に接続され、ソースは信号線1040に接続されている。更に、ドレインには画素電極1060、保持容量1070が接続されている。
【0103】
対向基板1080はガラス基板全面にITO膜等の透明導電膜が形成されている。透明導電膜は画素部1001の画素電極1060に対する対向電極であり、画素電極、対向電極間に形成された電界によって液晶材料が駆動される。対向基板1080には必要であれば配向膜や、ブラックマトリクスや、カラーフィルタが形成されている。
【0104】
アクティブマトリクス基板側のガラス基板にはFPC1031を取り付ける面を利用してICチップ1032、1033が取り付けられている。これらのICチップ1032、1033はビデオ信号の処理回路、タイミングパルス発生回路、γ補正回路、メモリ回路、演算回路などの回路をシリコン基板上に形成して構成される。
【0105】
また、本願発明を用いて作製できる液晶表示装置は透過型か反射型かは問わない。どちらを選択するのも実施者の自由である。この様に本願発明はあらゆるアクティブマトリクス型の電気光学装置(半導体装置)に対して適用することが可能である。
【0106】
なお、本実施の形態に示した半導体装置を作製するにあたって、実施の形態1〜実施の形態3のどの構成を採用しても良いし、各実施の形態を自由に組み合わせて用いることが可能である。
【0107】
〔実施の形態5〕
本願発明はアクティブマトリクス型EL表示装置に適用することも可能である。
その例を図13に示す。
【0108】
図13はアクティブマトリクス型EL表示装置の回路図である。81は表示領域を表わしており、その周辺にはX方向周辺駆動回路82、Y方向周辺駆動回路83が設けられている。また、表示領域81の各画素は、スイッチ用TFT84、コンデンサ85、電流制御用TFT86、有機EL素子87を有し、スイッチ用TFT84にX方向信号線88a (または88b )、Y方向信号線80a (または80b 、80c )が接続される。また、電流制御用TFT86には、電源線89a 、89b が接続される。
【0109】
なお、本実施の形態のアクティブマトリクス型EL表示装置に対して実施の形態1〜3のいずれの構成を組み合わせても良い。
【0110】
〔実施の形態6〕
本願発明は従来のIC技術全般に適用することが可能である。即ち、現在市場に流通している全ての半導体回路に適用できる。例えば、ワンチップ上に集積化されたRISCプロセッサ、ASICプロセッサ等のマイクロプロセッサに適用しても良いし、液晶用ドライバー回路(D/Aコンバータ、γ補正回路、信号分割回路等)に代表される信号処理回路や携帯機器(携帯電話、PHS、モバイルコンピュータ)用の高周波回路に適用しても良い。
【0111】
また、マイクロプロセッサ等の半導体回路は様々な電子機器に搭載されて中枢回路として機能する。代表的な電子機器としてはパーソナルコンピュータ、携帯型情報端末機器、その他あらゆる家電製品が挙げられる。また、車両(自動車や電車等)の制御用コンピュータなども挙げられる。本願発明はその様な半導体装置に対しても適用可能である。
【0112】
〔実施の形態7〕
本願発明を実施して形成されたCMOS回路や画素部は様々な電気光学装置(アクティブマトリクス型液晶ディスプレイ、アクティブマトリクス型ELディスプレイ、アクティブマトリクス型ECディスプレイ)に用いることができる。即ち、それら電気光学装置を表示部に組み込んだ電子機器全てに本願発明を実施できる。
【0113】
その様な電子機器としては、ビデオカメラ、デジタルカメラ、プロジェクター(リア型またはフロント型)、ヘッドマウントディスプレイ(ゴーグル型ディスプレイ)、カーナビゲーション、カーステレオ、パーソナルコンピュータ、携帯情報端末(モバイルコンピュータ、携帯電話または電子書籍等)などが挙げられる。それらの一例を図14、図15及び図16に示す。
【0114】
図14(A)はパーソナルコンピュータであり、本体2001、画像入力部2002、表示部2003、キーボード2004等を含む。本発明を画像入力部2002、表示部2003やその他の信号制御回路に適用することができる。
【0115】
図14(B)はビデオカメラであり、本体2101、表示部2102、音声入力部2103、操作スイッチ2104、バッテリー2105、受像部2106等を含む。本発明を表示部2102やその他の信号制御回路に適用することができる。
【0116】
図14(C)はモバイルコンピュータ(モービルコンピュータ)であり、本体2201、カメラ部2202、受像部2203、操作スイッチ2204、表示部2205等を含む。本発明は表示部2205やその他の信号制御回路に適用できる。
【0117】
図14(D)はゴーグル型ディスプレイであり、本体2301、表示部2302、アーム部2303等を含む。本発明は表示部2302やその他の信号制御回路に適用することができる。
【0118】
図14(E)はプログラムを記録した記録媒体(以下、記録媒体と呼ぶ)を用いるプレーヤーであり、本体2401、表示部2402、スピーカ部2403、記録媒体2404、操作スイッチ2405等を含む。なお、このプレーヤーは記録媒体としてDVD(Digtial Versatile Disc)、CD等を用い、音楽鑑賞や映画鑑賞やゲームやインターネットを行うことができる。
本発明は表示部2402やその他の信号制御回路に適用することができる。
【0119】
図14(F)はデジタルカメラであり、本体2501、表示部2502、接眼部2503、操作スイッチ2504、受像部(図示しない)等を含む。本願発明を表示部2502やその他の信号制御回路に適用することができる。
【0120】
図15(A)はフロント型プロジェクターであり、投射装置2601、スクリーン2602等を含む。本発明は投射装置2601の一部を構成する液晶表示装置2808やその他の信号制御回路に適用することができる。
【0121】
図15(B)はリア型プロジェクターであり、本体2701、投射装置2702、ミラー2703、スクリーン2704等を含む。本発明は投射装置2702の一部を構成する液晶表示装置2808やその他の信号制御回路に適用することができる。
【0122】
なお、図15(C)は、図15(A)及び図15(B)中における投射装置2601、2702の構造の一例を示した図である。投射装置2601、2702は、光源光学系2801、ミラー2802、2804〜2806、ダイクロイックミラー2803、プリズム2807、液晶表示装置2808、位相差板2809、投射光学系2810で構成される。投射光学系2810は、投射レンズを含む光学系で構成される。本実施の形態は三板式の例を示したが、特に限定されず、例えば単板式であってもよい。また、図15(C)中において矢印で示した光路に実施者が適宜、光学レンズや、偏光機能を有するフィルムや、位相差を調節するためのフィルム、IRフィルム等の光学系を設けてもよい。
【0123】
また、図15(D)は、図15(C)中における光源光学系2801の構造の一例を示した図である。本実施の形態では、光源光学系2801は、リフレクター2811、光源2812、レンズアレイ2813、2814、偏光変換素子2815、集光レンズ2816で構成される。なお、図15(D)に示した光源光学系は一例であって特に限定されない。例えば、光源光学系に実施者が適宜、光学レンズや、偏光機能を有するフィルムや、位相差を調節するフィルム、IRフィルム等の光学系を設けてもよい。
【0124】
ただし、図15に示したプロジェクターにおいては、透過型の電気光学装置を用いた場合を示しており、反射型の電気光学装置及びEL表示装置での適用例は図示していない。
【0125】
図16(A)は携帯電話であり、本体2901、音声出力部2902、音声入力部2903、表示部2904、操作スイッチ2905、アンテナ2906等を含む。本願発明を音声出力部2902、音声入力部2903、表示部2904やその他の信号制御回路に適用することができる。
【0126】
図16(B)は携帯書籍(電子書籍)であり、本体3001、表示部3002、3003、記憶媒体3004、操作スイッチ3005、アンテナ3006等を含む。本発明は表示部3002、3003やその他の信号回路に適用することができる。
【0127】
図16(C)はディスプレイであり、本体3101、支持台3102、表示部3103等を含む。本発明は表示部3103に適用することができる。本発明のディスプレイは特に大画面化した場合において有利であり、対角10インチ以上(特に30インチ以上)のディスプレイには有利である。
【0128】
以上の様に、本願発明の適用範囲は極めて広く、あらゆる分野の電子機器に適用することが可能である。また、本実施の形態の電子機器は実施の形態1〜6のどのような組み合わせからなる構成を用いても実現することができる。
【0129】
〔実施の形態8〕
本実施の形態では、本願発明を用いてEL(エレクトロルミネセンス)表示装置を作製した例について説明する。なお、図17(A)は本願発明のEL表示装置の上面図であり、図17(B)はその断面図である。
【0130】
図17(A)において、4001は基板、4002は画素部、4003はソース側駆動回路、4004はゲート側駆動回路であり、それぞれの駆動回路は配線4005を経てFPC(フレキシブルプリントサーキット)4006に至り、外部機器へと接続される。
【0131】
このとき、画素部4002、ソース側駆動回路4003及びゲート側駆動回路4004を囲むようにして第1シール材4101、カバー材4102、充填材4103及び第2シール材4104が設けられている。
【0132】
また、図17(B)は図17(A)をA−A’で切断した断面図に相当し、基板4001の上にソース側駆動回路4003に含まれる駆動TFT(但し、ここではnチャネル型TFTとpチャネル型TFTを図示している。)4201及び画素部4002に含まれる画素TFT(但し、ここではEL素子への電流を制御するTFTを図示している。)4202が形成されている。
【0133】
本実施の形態では、駆動TFT4201には図10のCMOS回路と同じ構造のTFTが用いられる。また、画素TFT4202には図10の画素部と同じ構造のTFTが用いられる。
【0134】
駆動TFT4201及び画素TFT4202の上には樹脂材料でなる層間絶縁膜(平坦化膜)4301が形成され、その上に画素TFT4202のドレインと電気的に接続する画素電極(陰極)4302が形成される。画素電極4302としては遮光性を有する導電膜(代表的にはアルミニウム、銅もしくは銀を主成分とする導電膜またはそれらと他の導電膜との積層膜)を用いることができる。本実施の形態ではアルミニウム合金を画素電極として用いる。
【0135】
そして、画素電極4302の上には絶縁膜4303が形成され、絶縁膜4303は画素電極4302の上に開口部が形成されている。この開口部において、画素電極4302の上にはEL(エレクトロルミネッセンス)層4304が形成される。EL層4304は公知の有機EL材料または無機EL材料を用いることができる。また、有機EL材料には低分子系(モノマー系)材料と高分子系(ポリマー系)材料があるがどちらを用いても良い。
【0136】
EL層4304の形成方法は公知の技術を用いれば良い。また、EL層の構造は正孔注入層、正孔輸送層、発光層、電子輸送層または電子注入層を自由に組み合わせて積層構造または単層構造とすれば良い。
【0137】
EL層4304の上には透明導電膜からなる陽極4305が形成される。透明導電膜としては、酸化インジウムと酸化スズとの化合物または酸化インジウムと酸化亜鉛との化合物を用いることができる。また、陽極4305とEL層4304の界面に存在する水分や酸素は極力排除しておくことが望ましい。従って、真空中で両者を連続成膜するか、EL層4304を窒素または希ガス雰囲気で形成し、酸素や水分に触れさせないまま陽極4305を形成するといった工夫が必要である。本実施の形態ではマルチチャンバー方式(クラスターツール方式)の成膜装置を用いることで上述のような成膜を可能とする。
【0138】
そして陽極4305は4306で示される領域において配線4005に電気的に接続される。配線4005は陽極4305に所定の電圧を与えるための配線であり、導電性材料4307を介してFPC4006に電気的に接続される。
【0139】
以上のようにして、画素電極(陰極)4302、EL層4304及び陽極4305からなるEL素子が形成される。このEL素子は、第1シール材4101及び第1シール材4101によって基板4001に貼り合わされたカバー材4102で囲まれ、充填材4103により封入されている。
【0140】
カバー材4102としては、ガラス板、FRP(Fiberglass−Reinforced Plastics)板、PVF(ポリビニルフルオライド)
フィルム、マイラーフィルム、ポリエステルフィルムまたはアクリルフィルムを用いることができる。本実施の形態の場合、EL素子からの光の放射方向がカバー材4102の方へ向かうため透光性材料を用いる。
【0141】
但し、EL素子からの光の放射方向がカバー材とは反対側に向かう場合には透光性材料を用いる必要はなく、金属板(代表的にはステンレス板)、セラミックス板、またはアルミニウムホイルをPVFフィルムやマイラーフィルムで挟んだ構造のシートを用いることができる。
【0142】
また、充填材4103としては紫外線硬化樹脂または熱硬化樹脂を用いることができ、PVC(ポリビニルクロライド)、アクリル、ポリイミド、エポキシ樹脂、シリコーン樹脂、PVB(ポリビニルブチラル)またはEVA(エチレンビニルアセテート)を用いることができる。この充填材4103の内部に吸湿性物質(好ましくは酸化バリウム)を設けておくとEL素子の劣化を抑制できる。なお、本実施の形態ではEL素子からの光が充填材4103を通過できるように、透明な材料を用いる。
【0143】
また、充填材4103の中にスペーサを含有させてもよい。このとき、スペーサを酸化バリウムで形成すればスペーサ自体に吸湿性をもたせることが可能である。また、スペーサを設けた場合、スペーサからの圧力を緩和するバッファ層として陽極4305上に樹脂膜を設けることも有効である。
【0144】
また、配線4005は導電性材料4305を介してFPC4006に電気的に接続される。配線4005は画素部4002、ソース側駆動回路4003及びゲート側駆動回路4004に送られる信号をFPC4006に伝え、FPC4006により外部機器と電気的に接続される。
【0145】
また、本実施の形態では第1シール材4101の露呈部及びFPC4006の一部を覆うように第2シール材4104を設け、EL素子を徹底的に外気から遮断する構造となっている。こうして図17(B)の断面構造を有するEL表示装置となる。なお、本実施の形態のEL表示装置は実施の形態1乃至7のいずれの構成を組み合わせて作製しても構わない。
【0146】
〔実施の形態9〕
本実施の形態では、実施の形態8に示したEL表示装置の画素部に用いることができる画素構造の例を図18(A)〜(C)に示す。なお、本実施の形態において、4401はスイッチング用TFT4402のソース配線、4403はスイッチング用TFT4402のゲート配線、4404は電流制御用TFT、4405はコンデンサ、4406、4408は電流供給線、4407はEL素子とする。
【0147】
図18(A)は、二つの画素間で電流供給線4406を共通とした場合の例である。即ち、二つの画素が電流供給線4406を中心に線対称となるように形成されている点に特徴がある。この場合、電源供給線の本数を減らすことができるため、画素部をさらに高精細化することができる。
【0148】
また、図18(B)は、電流供給線4408をゲート配線4403と平行に設けた場合の例である。なお、図18(B)では電流供給線4408とゲート配線4403とが重ならないように設けた構造となっているが、両者が異なる層に形成される配線であれば、絶縁膜を介して重なるように設けることもできる。この場合、電源供給線4408とゲート配線4403とで専有面積を共有させることができるため、画素部をさらに高精細化することができる。
【0149】
また、図18(C)は、図18(B)の構造と同様に電流供給線4408をゲート配線4403と平行に設け、さらに、二つの画素を電流供給線4408を中心に線対称となるように形成する点に特徴がある。また、電流供給線4408をゲート配線4403のいずれか一方と重なるように設けることも有効である。この場合、電源供給線の本数を減らすことができるため、画素部をさらに高精細化することができる。
【符号の説明】
【0150】
101 基板
102 下地膜
103 下地膜
104 島状半導体膜
105 島状半導体膜
155 TFTに有害な汚染不純物

【特許請求の範囲】
【請求項1】
ガラス基板上に第1の被膜を形成し、
フッ素を含有する酸性溶液を前記第1の被膜表面に接触させ、前記酸性溶液を一定方向に流すことにより、前記第1の被膜表面の汚染不純物を除去し、
前記汚染不純物が除去された前記第1の被膜に接して第2の被膜を形成する半導体装置であることを特徴とする半導体装置の作製方法。
【請求項2】
請求項1において、
前記第1の被膜と前記第2の被膜は、半導体膜と前記半導体膜に接する絶縁膜であることを特徴とする半導体装置の作製方法。
【請求項3】
請求項1において、
前記第1の被膜と前記第2の被膜は、絶縁膜と前記絶縁膜に接するゲート配線であることを特徴とする半導体装置の作製方法。
【請求項4】
請求項1乃至請求項3のいずれか一において、
前記汚染不純物は、1族元素又は2族元素から選択された1元素又は複数元素からなることを特徴とする半導体装置の作製方法。
【請求項5】
請求項1乃至請求項3のいずれか一において、
前記汚染不純物は、Na、K、Mg、Ca、Baから選択された1元素又は複数元素からなることを特徴とする半導体装置の作製方法。
【請求項6】
請求項1乃至5のいずれか一において、前記酸性溶液は、フッ酸とフッ化アンモニウムの混合比が体積比で1:50のバッファードフッ酸であることを特徴とする半導体装置の作製方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate


【公開番号】特開2010−263225(P2010−263225A)
【公開日】平成22年11月18日(2010.11.18)
【国際特許分類】
【出願番号】特願2010−130833(P2010−130833)
【出願日】平成22年6月8日(2010.6.8)
【分割の表示】特願2000−85251(P2000−85251)の分割
【原出願日】平成12年3月24日(2000.3.24)
【出願人】(000153878)株式会社半導体エネルギー研究所 (5,264)
【Fターム(参考)】